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New Method for Computing the Resonant Frequencies
of Dielectric Resonators

TATSUO ITOH, SENIOR MEMBER, IEEE, AND
RONALD S. RUDOKAS, STUDENT MEMBER, IEEE

Abstract—A new method is developed for accurately predicting
resonant frequencies of dielectric resonators used in microwave circuits,
By introducing an appropriate approximation in the field distribution
outside the resonator. an analytical formulation becomes possible. Two
coupled eigenvalue equations thus derived are subsequently solved by a
numerical method. The accuracy of the results computed by the present
method is demonstrated by comparison with previously published data.

1. INTRODUCTION

Dielectric resonators made of high permittivity material have
found practical applications in microwave circuits due mainly to
theit high-Q valu¢s. The dominant TEg,; mode in the low-
profile cylindrical resonators [Fig. 1(a)] has traditionally been
analyzed by using the so-called magnetic wall model, in which
the cylindrical surface containing the circumference of the
resonator is réplaced with a fictitious open-circuit boundary
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Fig. 1. (a) Dielectric resonator. (b) Side view of dielectric resonator.

(magnetic wall) [1]. Recently, Konishi e al. [2] reported a more
accurate method based on the varidtional procédure for com-
puting the resonant frequency of TEJ,; modes. Their predicted
resonant frequencies agree with experimental data within 1
percent [2]. On the other hand, the magnetic wall method
typically gives rise to numerical values smaller than the experi-
mental by about 10 percent.

_ The method reported by Garault and Guillon [4] is also
capable of predicting the resonant frequency with less than
1 percent error. In their method, successive application of
imperfect magnetic wall conditions on side and end walls results
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in the dielectric resonator of effective height and radius. From
this process, an accurate resonant frequency is obtained.

In this short paper, a simple numerical procedure is reported
for predicting the resonant frequencies of TES;; modes in
cylindrical dielectric resonators. The method is based on the
semianalytical technique originally developed by Marcatili [3]
for analyzing the propagation characteristics of a rectangular
dielectric waveguide, and extended here to apply to the three-
dimensional cylindrical resonator structure. Although slight
modifications of the formulation make it possible to analyze
rectangular resonators [1] as well, such extensions are not in-
cluded here.

i

II. METHOD OF ANALYSIS

In Fig. 1(a), a typical dielectric resonator is placed on a
dielectric substrate which is in turn backed by a ground plane.
The relative dielectric constant ¢,; of the resonator is much
higher than that of the substrate ¢.,. When &, = 1 and the
substrate thickness # becomes infinity, the structure represents the
resonator in free space as analyzed in [1] and [2].

The major difficulty in the analysis of dielectric resonators lies
in the fact that the structure as shown in Fig. 1 does not belong
to a separable geometry. The rigorous analysis requires quite
complicated formulations. However, it is possible to introduce a
simplification which leads to a pair of conventional eigenvalue
equations. This simplification arises from observing that in a
high-Q resonator most of the electromagnetic energy is stored in
region 1 [see Fig. 1(b)] and the field decays exponentially in
regions 2-4. A small amount of energy is in 2—4 and even less is
in regions 5 and 6. Therefore, only a small error is introduced in
the calculation of resonant characteristics if one ignores the field
in 5 and 6 and removes the requirement of matching the field
between regions 2 and 5, 6, etc. It is now necessary to match the
field only on the boundary surfaces of region 1.

For TE modes which have no circumferential variation, the
H, field in each region may be written as

Ay sin f(z — zg)Jo(hr) region 1 (1a)
H = A, sin f(z — zp)Ky(pr) region 2 (1b)
z Az exp [—y(z — d)Wo(hr) region 3 (1¢)
Ay sinh [E(z + £)]J(hr)  region 4 1d)
where
B? = e1ko® — B* = ko* + p?

}’2 — h2 _ k02 62 — h2 _ 8,2k02

ko = woVeoto [0))

and z,, Ay, A,, As, and A, are constants to be determined.
Jo and K, are the Bessel and the modified Hankel functions of
order zero. wy is the angular resonant frequency. All the field
components can easily be derived from (1). Note that E, =
E. = Hy =0 for TE modes with no circumferential field
variation.

The next task is to apply the continuity conditions on H, and
Egjatr =a,0 < z < d,and Eqjand H,atz = 0andd,0 < r < a.
When this is done, 4,—4, and z, can be eliminated to yield two
coupled eigenvalue equations

Jo'tha) | Ky'(pa) _

= (3a)
hJy(ha)  pKy(pa)
d = gn + tan~! Z)
B qn an (ﬂ
+ tan‘l(% coth ft), g=012,--- (3b)
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Fig. 2. Numerical results of the resonant frequency.

where the principal branches are to be taken for the arctangent
functions. The primes in (3a) indicate differentiation with respect
to arguments. Equations (3a) and (3b) together with (2) are
then solved for the resonant frequency w,. It should be noted
that, in the magnetic wall model (3a) is replaced with

Jo(ha) = 0. @)

This equation is the consequence of the imposition of the
artificial open boundary condition on the cylindrical surface.
This oversimplification caused the predicted resonant frequencies
in [1] to be substantially lower than the experimental data.

Before concluding this section, let us discus$ the designation
of the mode index. For a given k,, (3a) has a finite number of
roots which correspond to different radial field distributions.
The orders of these roots are numbered with the index m starting
from 1. On the other hand, the field variation in the axial (z)
direction is governed by the index ¢. In the circumferential
direction, the field does not vary and hence the index takes only
the value zero. The resonant modes are now designated as
TEg4, and the dominant mode TE,, , is often referred to in the
literature [2] as TEg; .

III. NUMERICAL RESULTS

The resonant frequency of the dominant mode in the dielectric
resonator placed in free space has been computed. For this case,
&, = land t —» o0, so that (3b) becomes

B tan (ﬁ—;) =y &)

for g = 0.

In Fig. 2, numerical results for the resonators with the struc-
tural parameters identical to those in {2] are plotted. The resonant
frequencies predicted by the present method agree favorably
with the experimental data and results computed by Konishi
et al. [2], while those derived by the magnetic wall model are
considerably lower. It should also be noted that the agreement
between the present and Konishi’s methods is better for ¢,; = 88
thane,; = 35. This is expected, since the basic assumption of the
present method becomes less valid for resonators with lower
dielectric constants and hence lower Q.
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IV. ConcLusions |

A new method has been presented for computing the resonant
frequencies of cylindrical dielectric resonators.

Although the method by Konishi ef al. [2] is more accurate,
particularly for resonators with lower dielectric constants, their
method is considerably more complicated than the present one.
The method in {4] is also more complicated than the present
one. With almost the same order of simplicity in formulation and
computational labor as the magnetic wall model [1], the present
method provides results in close agreement with data reported
in [2].
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Conversion Loss Limitations on Schottky-Barrier Mixers
" MALCOLM McCOLL

Abstract—A new set of criteria involving diode area, material param-
eters, and temperature is introduced for the Schottky-barrier mixer
diode that must be considered if its usage is to be extended to the sub-
millimeter Wavelength region or cryogenically cooled to reduce the noise
contribution of the mixer. It has been well established that, in order to
reduce the parasitic loss as the frequency is increased, it is necessary to
reduce the area of the diode, What has not been analyzed heretofore is
the effect that a reduction in diode area can have on the intrinsic con-
version loss Lo of the diode resulting from its nonlinear resistance. This
analysis focuses on the competing requirements of impedance matching
the diode to its imbedding circuit and the finite dynamic range of the
nonlinear resistance. As a result, L, can increase rapidly as the area is
reduced. Results are first expressed in terms of dimensionless parameters,
and then some respresentative examples are investigated in detail. The
following conclusions are drawn: a large Richardson constant extends
the usefulness of the diode to smaller diameters, and hence, shorter wave-
lengths; cooling a thermionic emitting dicde can have a very detrimental
effect on Lo; impedance mismatching is found, in general, to be a ne-
cessity for minimum conversion loss; and large barrier heights are
desirable for efficient tunnel emitter converters.

I. INTRODUCTION

The metal-semiconductor contact, or Schottky-barrier diode,
has a long history of utilization as a mixer element [1], [2].
Its use has progressed to higher and higher frequencies, with the
highest frequency recently being demonstrated by Fetterman
et al., who observed mixing at 3 THz with a GaAs Schottky
diode [3]. For efficient operation at submillimeter wavelengths,
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many previously accepted tenets applicable to the design of micro-
wave Schottky diodes must be reexamined.

Mixer conversion loss L., defined as the ratio of available
power from the RF source to the power absorbed in the IF load,
can be expressed in the form

L, = LoL,. M

The intrinsic conversion loss L, is the loss arising from the
conversion process within the nonlinear resistance of the diode
and includes the impedance mismatch losses at the RF and IF
ports. The parasitic loss L,, is the loss associated with the parasitic
elements of the diode, the junction capacitance, and spreading
resistance. Defined as the ratio of total power absorbed by the
impedance R, of the nonlinear resistance at the signal frequency,
L, is given by [41

L, =1+ RJR, + 0,>C?R,R, )

where o, is the signal angular frequency and C is the junction
capacitance. The spreading resistance R;is the resistance resulting
from constriction of current flow in the semiconductor near the
contact and is in series with the parallel elements C and R,,
Since C oc d? and R, oc d~1, where d is the diameter of the
junction, (2) indicates that d should be reduced as the frequency
of interest is increased. With the development of electron beam
fabrication techniques [5], [6], the ability to produce Schottky
barriers with dimensions of the order of a few hundred angstroms
is imminent. However, the effect of a reduction in area on the
intrinsic conversion loss Ly must also be evaluated to determine
overall mixer performance. This consideration is the central
topic of this short paper.!

The dependence of L, on area originates in the impedance
requirements the circuit places on the device. In order for the
diode, driven by a local oscillator (LO), to couple most efficiently
to a circuit with a specified impedance, it must pass approximately
the same current, independent of the junction size. Hence
reducing the size of the diode increases the current density
through the device and, as a consequence, the dc bias voltage
V, must be increased. Increasing ¥V, limits the useful amplitude
of the LO voltage ¥, because the current-voltage (/-V') charac-
teristic of the junction in the forward direction is only nonlinear
for applied voltages less than the barrier height potential V3 of
the metal-semiconductor interface. Since ¥V, + V; < Vp, de-
creasing the area serves to limit F;, and consequently may
increase L.

Because of the inverse relationship between the RF impedance
of the diode and the bias current, superior results should be
obtained for small areas if the Richardson constant of the
semiconductor and the impedance of the circuit are large. The
much larger Richardson constant of silicon extends its usefulness
to smaller diameters than gallium arsenide. Moreover, it is
predicted that the diode should be operated in an impedance
mismatched condition; cooling a thermionic emitting diode can
have a very detrimental effect on L, and large values of barrier
height are desirable for efficient tunnel emitter converters.

From the classical conversion loss equations developed in
Section II, specific situations are analyzed in Section IIIL.
Optimum coupling between the diode and the circuit is first
analyzed. This result is applied to both thermionic emitting
n-GaAs and n-Si Schottky diodes operating at 290 and 77 K,

! For examples of L, values with Schottky barriers on GaAs, Si, and
Ge for wavelengths extending into the submillimeter, the reader is referred
to [7].



